
Dataflow Analysis

Colin Unger

February 27, 2020

1 Introduction

Dataflow analysis is a generalized framework for analyzing programs. A “program analysis” is
an automated technique for synthesizing judgements about a program: for example, a program
analysis might judge whether or not a buffer overflow could occur in a program, or what values
in a program are constant, or which pointer values could potentially point to the same location.
Program analysis is broadly used in the field of compilers and programming languages, but is also
very important in reverse engineering in binary analysis—a decompiler like IDA Pro or Ghidra will
typically perform tens to hundreds of analyses internally to transform the bytes of an executable
into the pseudocode that reverse engineers often rely on.

1.1 Approximations

When analyzing programs, it is important to recognize that solving the problem of program analysis
is, in general, impossible—similar to the halting problem, answering any nontrivial property of a
program is ultimately undecidable. As such, we are forced to approximate. Since approximation
is such a key aspect of a program analysis, we often group analyses based on the properties their
approximations define: “sound”, “precise”, both, or neither.

A sound analysis guarantees that if the analysis shows that a property does not hold for a program,
then there does not exist a concrete execution that displays this property. As an example, take a
analysis that examines a program to determine if it contains a buffer overflow. If this analysis is
sound, then if the analysis determines that there are no buffer overflows, then it is guaranteed
that a buffer overflow will never occur in the execution of the program. On the other hand, if the
analysis alerts us to the presence of a potential overflow, we cannot say for certain whether the
overflow exists (a “true positive”) or is simply a result of “overapproximating” (a “false positive”).
In dataflow analysis, we typically use sound analyses, as these have historically been a primary
focus. However, dataflow analysis is capable of encoding other approximations too, and these other
approximations can often be quite useful.

A precise analysis guarantees the opposite of a sound analysis—if it shows a property (in our
example, the existence of a buffer overflow) then there must be a concrete execution that displays
this buffer overflow, but if it claims the absence of a buffer overflow, we do not know if this is
because the program is overflow-free or if it an artifact from the analysis’s “underapproximation” of
the program. Said another way, a precise analysis guarantees no false positives, but allows false
negatives. In contrast to a sound analysis, a precise analysis guarantees

However, it turns out that often times the approximations necessary to produce a sound or precise
analysis are quite extreme, resulting in a large number of false positives or false negatives respectively.

1



Often, we can get significantly improved performance if we sacrifice both soundness and precision—
now we can have both false positives and false negatives, but often times we can significantly
decrease the total number of false results. These analyses are often jokingly termed “soundy.”

Finally, it is possible to guarantee both soundness and precision at the cost of guaranteed termination—
if our analysis terminates, the result will have no false positives or false negatives. This, for example,
is the approach typically used in symbolic execution when loop depth is not bounded. However, for
most real-world programs, termination of these analyses is unlikely in practice, so one of the above
approximations are typically required.

1.2 Intuition

Now that we understand the constraints of the problem we face in program analysis, we’ll walk
through a basic example of dataflow analysis that appeals to our intutition—we’ll formalize this all
later.

For the rest of these notes, we’ll be analyzing the following language. Since the focus of this class is
not on formalizing program syntax and semantics, we appeal to the reader’s intution in terms of
the exact semantics of the operations represented. Our language is only be capable of computing on
integers, and even then can only perform the operations of addition (+) and comparison (<=) on
these numbers. To simulate interactions with the external environment (reading input from the user,
generating random numbers, reading from the network, etc.) we add non-deterministic choice to
our language: the expression {1, 2, 3} will non-deterministically evaluate to either 1, 2, or 3 at
runtime. Similar to interactions with the environment, we are not able to predict the value that it
will be evaluated to without running the program. Our language has mutable variables as well as
typical control-flow structures (loops, branches, etc.). Below is a simple example program:

1: if ({0, 1}) {
2: x = 1
3: y = 2

} else {
4: x = 4
5: y = 3

}
6: z = x + y

For simplicity, we will examine a toy problem in program analysis: the question of determining
the parity (even or odd) of each program variable before and after every point in our program (the
numbers at the beginning of certain lines of our program). We will write the location right before
the label n as nÒ and the location right after the label as nÓ. The first key aspect of dataflow analysis
is that we do not perform it on a standard syntactic representation of the program—instead, we first
convert the program to a control-flow graph (CFG) similar to the one generated by your recursive
disassembler and then perform our analysis on that graph. The CFG for our example program
is

2



1: if ({0, 1})

2: x = 1

3: y = 2

4: x = 4

5: y = 3

6: z = x + y

The second key aspect is that we are going to pretend that instead of operating on integers, our
program actually operates on new domain of values that expresses the judgements we want to make
about our program. This new domain is typically called the “abstract domain”. In the case of our
parity analysis, we will want to have the values Even and Odd, as these are the judgements we
are interested in making. However, there are obviously program locations where a variable could
take on both an even and an odd value—for example, at 6Ò in our example program, x could be
either 1 or 4. Thus, we will need a value to represent a value on which we cannot make judgements.
Historically, this value is called “top”, written as the symbol J. There remains a few program points
at which we still do not know the value—before the variable is assigned. For example, consider
1Ò: what is the parity of x at this point? It may seem intuitive to assign x to J, but this only makes
sense if the language sets x randomly at the start of the program. What would be more accurate is
if we had a way of specifying that a variable has no possible parities (unlike J which represents
both parities)—typically, this value is called “bottom” (written K). The distinction between J and
K may seem a bit arbitrary for now, but should become clear once we dive into the mathematical
foundations of dataflow analysis.

With these four values, we have our full domain:

Parity “ tJ, Even, Odd,Ku

Now to compute with these, we’ll have to do two things: first of all, we’ll have to lift the concrete
integers in the program to elements of Parity, and we’ll have to define how the operations our
program performs on concrete integers maps to operations on elements of Parity. Fortunately, these
should be essentially exactly what you’d intuitively expect! For example, we’ll define a function
α : Pow Z Ñ Parity that will lift sets of concrete integers into the abstract domain. Intuitively, the
reason we must operate on sets of integers is that we can have non-deterministic choice of one of
many values in our program, so we must be able to simultaneously lift more than one value (for
example, {0, 1} at 1). We’ll see exactly more formally why we want α to operate on sets later when
we discuss Galois connections.

3



The definition for α is quite simple:

αpsq “

$

’

’

’

’

&

’

’

’

’

%

K if s “ H

Even if @x P s . x is even

Odd if @x P s . x is odd

J otherwise

Now we’ll need to define addition:

+ K Odd Even J

K K K K J

Odd K Even Odd J

Even K Odd Even J

J J J J J

and similarly comparison:

<= K Odd Even J

K K K K J

Odd K J J J

Even K J J J

J J J J J

With these, we can now step through our CFG in sequential order computing on these abstract
values. The set of current abstract values is sometimes referred to as the “abstract state.” The result
of this is:

1: if ({0, 1})

x ÞÑ K

y ÞÑ K

z ÞÑ K

x ÞÑ K

y ÞÑ K

z ÞÑ K

2: x = 1

x ÞÑ K

y ÞÑ K

z ÞÑ K

x ÞÑ Odd

y ÞÑ K

z ÞÑ K

3: y = 2

x ÞÑ Odd

y ÞÑ K

z ÞÑ K

x ÞÑ Odd

y ÞÑ Even

z ÞÑ K

4: x = 4

x ÞÑ K

y ÞÑ K

z ÞÑ K

x ÞÑ Even

y ÞÑ K

z ÞÑ K

5: y = 3

x ÞÑ Even

y ÞÑ K

z ÞÑ K

x ÞÑ Even

y ÞÑ Odd

z ÞÑ K

6: z = x + y

x ÞÑ J

y ÞÑ J

z ÞÑ K

x ÞÑ J

y ÞÑ J

z ÞÑ J

At nearly every single node, the abstract state at the end of the prior node is the same as the abstract
state at the beginning of the following node. This makes sense—we would not expect the abstract
state to spontaneously change without a program operation being performed. However, at 6Ò,
this does not occur: we transition from tx ÞÑ Odd, y ÞÑ Even, z ÞÑ Ku at 3Ó and tx ÞÑ Even, y ÞÑ
Odd, z ÞÑ Ku at 5Ó to tx ÞÑ Odd, y ÞÑ Even, z ÞÑ Ku at 6Ò! This is because we have reached a so-called
“join point”—we have two states incoming into the same block. Now, if we were performing standard
symbolic execution, we would expect to simply execute each of the paths separately, and thus derive

4



the result that z ÞÑ Odd at 6Ó. However, this is the fundamental approximation that static analysis
uses to maintain decidability: instead of executing the paths separately, we merge them back into
one state at join points. Merging x ÞÑ Odd and x ÞÑ Even should give us x ÞÑ J, since in the merged
state x is capable of being odd (if it comes from 3) or even (if it comes from 5). Unfortunately,
this forces us to make the judgement that z ÞÑ J at 6Ó—an overapproximation of the property we
wanted to examine (parity). In fact, if we formally analyzed this analysis, we would find that it is in
fact sound, as we sometimes incorrectly state a wider range of possible parities than is possible, but
we never state a narrower range.

However, as we know from symbolic execution, the challenging part of analyzing a program is
not typically branches, but loops. To see how dataflow analysis handles loops, we’ll examine the
following program:

1: x = 0
2: while ({0, 1}) {
3: x = x + 1

}

As always with dataflow analysis, we immediately transform this program into its CFG:

1: x = 0

2: while ({0, 1})

3: x = x + 1

END

Now, as before, we traverse the nodes of our graph in order. However, now that our graph is cyclic,
the order and stopping condition is not quite so obvious! The correct answer turns out to be to use
a worklist algorithm as in your recursive disassembler. We start off with

5



1: x = 0
x ÞÑ K

2: while ({0, 1})

3: x = x + 1

END

WORKLIST: 1, 2, 3

Following the worklist algorithm, we first remove 1 and perform its computation on the incoming
state 1Ò. Note that we signify the current node which has been removed from the worklist and is
being processed as still briefly in the worklist and underlined:

1: x = 0
x ÞÑ K

x ÞÑ Even

2: while ({0, 1})

3: x = x + 1

END

WORKLIST: 1, 2, 3

We then process 2, using the incoming abstract state from 1Ó:

6



1: x = 0
x ÞÑ K

x ÞÑ Even

2: while ({0, 1})
x ÞÑ Even

x ÞÑ Even

3: x = x + 1

END

WORKLIST: 2, 3

Then 3:

1: x = 0
x ÞÑ K

x ÞÑ Even

2: while ({0, 1})
x ÞÑ Even

x ÞÑ Even

3: x = x + 1
x ÞÑ Even

x ÞÑ Odd

END

WORKLIST: 3

However, now we see the effect of loops: by updating 3Ó, we’ve rendered the state at 2Ò incorrect as
it should have been merged with tx ÞÑ Oddu! To handle this, whenever an outgoing state changes
and this change modifies the input state to a child state, we’ll add these children to the work list if
they aren’t there already—therefore, in this case, we’ll add 2 to the worklist. Now, since 2 is on the
worklist, we remove it and process its node:

7



1: x = 0
x ÞÑ K

x ÞÑ Even

2: while ({0, 1})
x ÞÑ J

x ÞÑ J

3: x = x + 1
x ÞÑ Even

x ÞÑ Odd

END

WORKLIST: 2

And now since the state at 2Ó has changed, we need to add 3 to the worklist and process it:

1: x = 0
x ÞÑ K

x ÞÑ Even

2: while ({0, 1})
x ÞÑ J

x ÞÑ J

3: x = x + 1
x ÞÑ J

x ÞÑ J

END

WORKLIST: 3

Now since merging our new state for 3Ó with the existing one at 2Ò yields no change, we add
nothing to the worklist. Our worklist is now empty, so our analysis is completed!

In our diagrams above, we started with all abstract states simply absent. While this is clearer for
illustrative purposes, it serves to artificially complicate the algorithm: it is equivalent to simple
starting with every abstract state set to tx ÞÑ Ku. Secondly, instead of viewing each state having a
pair of abstract states, we can simply view the entire program as having one giant abstract states
which is simply a giant map from before- and after-locations to our prior abstract states. While
this may seem like a useless way of viewing the analysis, it is convenient since it allows us to view
execution of the program on our concrete value as simply a single function application: given prior
full-program abstract state s, we can simple step this state to a new state s1 by applying a summary
of our entire program as operating on abstract states using the abstract operations we defined earlier
(we call this function F)—therefore, s1 “ Fpsq. Our worklist algorithm then becomes equivalent to
simply repeatedly applying F until s stops changing.

You may, however, ask if this is in fact guaranteed to always terminate. For example, if we use

8



the trivial abstract domain Concrete “ Pow Z, we will match our program’s concrete execution
exactly, and many programs (like this one) are not guaranteed to terminate. Thus, it is important to
know what divides abstract domains with guaranteed termination with those that do not have it,
as well as to establish certain properties of correctness between the concrete and abstract domains.
Thus is what will explore in the next section.

2 Mathematical Foundations of Dataflow Analysis

2.1 Preliminaries

Definition 2.1. A “binary relation” on a set S is a subset of Sˆ S. Typically we denote a binary
relationship with Ď. We also often write x Ď y instead of px, yq P pĎq.

If tpx, xq | x P Su Ď pĎq, we say that Ď is “reflexive.” If x Ď y^y Ď z ùñ x Ď z, we say that Ď is
“transitive.” If a Ď b ðñ b Ď a, we say that Ď is “symmetric.” If a ‰ b^a Ď b ùñ b ­Ď a, we say
that Ď is “antisymmetric.”

Definition 2.2. A “preorder” is a reflexive, transitive binary relation.

Definition 2.3. An “equivalence relation” is a symmetric preorder. A “partial order” is an antisym-
metric preorder. A partially ordered set is typically abbreviated “poset.”

We can visualize partial orderings as “Hasse diagrams.” We represent the elements of S as nodes
of a graph, and represent the binary relation as upward paths in the graph. Note thus that the
direction in which you draw the graph is significant: larger elements must be drawn above smaller
elements. For example, for S “ Powt1, 2, 3u and pĎq “ pĎq, the Hasse diagram is:

t1, 2, 3u

t1, 2u t1, 3u t2, 3u

t1u t2u t3u

tu

Note that partial orders do not have to be connected—the following is a valid Hasse diagram:

x

y

a

b
c

Definition 2.4. A “total order” is a partial order that orders all pairs of elements.

Definition 2.5. The “least upper bound” or “join” (typically represented by the symbol \) of a set
is the least element that is greater than all elements in the set. Note that such a least upper bound is
not guaranteed to exist in a poset.

Similarly, the “greatest lower bound” or “meet” (typically represented by the symbol [) of a set is
the greatest element that is less than all elements in the set. Again, this is not guaranteed to exist.

9



Definition 2.6. A “chain” is a totally ordered subset of a poset.

Definition 2.7. A “complete partial order” (typically abbreviated “CPO”) is a partial order where
every chain has a join.

Note that all finite posets are CPOs.

Definition 2.8. A “pointed CPO” is a CPO with a least element. Often, this element is a called
“bottom” (represented by the symol K).

Definition 2.9. A “lattice” is a partial order where every two elements has a join and a meet.

Definition 2.10. A poset satisfies the “finite ascending chain condition” if there does not exist an
infinite sequence a1, a2, . . . such that a1 Ď a2 Ď . . .. We call a poset that satisfies the finite ascending
chain condition “noetherian.”

Definition 2.11. A lattice is “bounded” if there exists a single greatest element J and a single least
element K. A lattice is “complete” if every subset has a join and a meet. Note that all complete
lattices are also bounded lattices.

Definition 2.12. Given a function f : S Ñ S, an element x P S is a “fixed point” (also termed
“fixpoint”) of f if f pxq “ x.

Definition 2.13. Let S be a poset. The least fixed point of a function f : S Ñ S is the fixed point u of
f such that for any other fixed points y of f , u Ď y. An element x P S is a “pre-fixed point” of f if
x Ď f pxq. Similarly, an element x P S is a “post-fixed point” of f if f pxq Ď x.

Definition 2.14. Let R, S be posets. A function f : R Ñ S is “monotonic” if x ĎR y ùñ f pxq ĎS f pyq.
Note that it is important to distinguish monotonicity from that of “extensivity”: a function f is
an “extensive” function if x Ď f pxq. Extensivity captures the concept of “always increasing”, while
monotonicity captures the concept of “preserving ordering.”

Theorem 2.1 (Tarski’s Theorem). Let L be a complete lattice and f : L Ñ L monotone, then the set
of fixed points of f is a complete lattice.

The significance of Tarski’s Theorem may not immediately seem clear, so let’s unpack what it’s
saying. The key aspect is that the set of fixed points is a complete lattice. By definition, in any
complete lattice there exists a least element. Thus, if we satisfy the conditions of Tarski’s Theorem, a
function must have a least fixed point!

To relate this back to dataflow analysis, remember that we can view the algorithm as computing
with one giant abstract state mapping program locations to “mini abstract states”, and executing on
this abstract state as a single function F that summarizes a single step of our whole program, and
thus that we terminate and return the abstract state s when Fpsq “ s. But this is just a fixed point!
It turns out that we don’t just want any fixed point though: for any reasonable program analysis,
assigning every variable at every program location to J is immediately a fixed point since intutively,
if all variables could be random at every point, we’ll never be able to make any judgements about
the program’s behavior. Thus, we don’t want just any fixed point, we want to the most precise
fixed point, i.e. the least fixed point. With Tarski’s theorem, we know that if we design our lattice
of combined abstract states to be a lattice and make f (typically called the transition function)

10



monotonic, then this least fixed point exists. However, at the moment we have no algorithmic way
to find it. That takes us to our second key theorem:

Definition 2.15 (Kleene). We will denote the least fixed point of a function f greater than an element
x by lfpx f “ f npxq, where f npxq “ f p f p

n
¨ ¨ ¨ p f pxqq ¨ ¨ ¨ qq. Let L be a complete Noetherian lattice and

f : L Ñ L monotone and x a pre-fixed point of f ; then Dpn P Nq such that lfpx f “ f npxq.

Thus, if we satisfy the conditions of Theorem 2.15, all we have to do to find a least fixed point is re-
peatedly call the function—the same algorithm that we intuitively came up with in the introduction!
To find the least fixed point we’ll also need an element x Ď lfpx f , but fortunately, we can just use
the abstract state with every variable at every program location assigned to K, and thus we easily
satisfy this inequality—notice that this is also the initial state we used in the introduction.

Now we have a way to find a fixed point in our lattice of abstract values, but it would be nice to be
able to formalize the connection between our abstract values and the actual execution of our program.
For example, in the case of the Parity domain, intuitively Even represents the set of all even integers,
Odd represents the set of all odd integers, J represents Z, and K represents H. However, as of
now, we have no way to express this connection, or to use the connection to understand whether or
not our analysis actually correctly approximates the execution of our program. We could imagine
defining a pair of functions α : Pow Z Ñ Parity and γ : Parity Ñ Pow Z, where α maps sets of
concrete values (we can think of α mapping single values by mapping their singleton sets) to the
corresponding abstract values, and γ capturing what concrete values these abstract values represent.
We’ve already run into α, typically referred to as the “abstraction function” in the introduction.
γ is simply its opposite, and is typically referred to as the “concretization function.” However,
there are still properties we would want to hold for these α and γ: for example, if αpt1uq “ Odd,
it would seem wrong for 1 R γpOddq—essentially, we wouldn’t be lifting our values to the proper
abstract value. It turns out that the conditions on our abstraction and concretization function can be
expressed by a “Galois connection”:

Definition 2.16. Let R, S be posets and F : A Ñ B and G : B Ñ A. R and S form a Galois connection
(typically written R ´́ Ñ́Ð́´́

F

G
S) if the following conditions hold:

1. F, G are monotone, and

2. @r P R, s P S, Fprq ĎS s ðñ r ĎR Gprq.

The condition that we will want is that our concrete lattice Pow Z where Ď“Ď and our abstract
lattice Parity form a Galois connection under α and γ:

Pow Z ´́ ÑÐ́ ´
α

γ
Parity

Once we have defined α and γ, we now have a well-defined relationship between concrete and
abstract values. It feels like this should also give us a well-defined relationship between concrete
and abstract operations, and indeed it does: for any abstract operation f and corresponding concrete
operation f #, the most precise f possible is f “ α ˝ f # ˝ γ. Intutively, this corresponds to simply
concretizing the given abstract values, calculating the set of results from performing the operation
on the set of concrete values, and then abstracting the set of results. Note that we cannot use this
while actually performing datafloew analysis on an actual program, since concretizing the abstract
value may lead to an infinite set. However, we can use it to check that the abstract operation we
define is as precise as possible by proving its equivalence.

11


